Comparison of Decision-Assist and Clinical Judgment of Experts for Prediction of Lifesaving Interventions.
نویسندگان
چکیده
Early recognition of hemorrhage during the initial resuscitation of injured patients is associated with improved survival in both civilian and military casualties. We tested a transfusion and lifesaving intervention (LSI) prediction algorithm in comparison with clinical judgment of expert trauma care providers. We collected 15 min of pulse oximeter photopletysmograph waveforms and extracted features to predict LSIs. We compared this with clinical judgment of LSIs by individual categories of prehospital providers, nurses, and physicians and a combined judgment of all three providers using the Area Under Receiver Operating Curve (AUROC). We obtained clinical judgment of need for LSI from 405 expert clinicians in135 trauma patients. The pulse oximeter algorithm predicted transfusion within 6 h (AUROC, 0.92; P < 0.003) more accurately than either physicians or prehospital providers and as accurately as nurses (AUROC, 0.76; P = 0.07). For prediction of surgical procedures, the algorithm was as accurate as the three categories of clinicians. For prediction of fluid bolus, the diagnostic algorithm (AUROC, 0.9) was significantly more accurate than prehospital providers (AUROC, 0.62; P = 0.02) and nurses (AUROC, 0.57; P = 0.04) and as accurate as physicians (AUROC, 0.71; P = 0.06). Prediction of intubation by the algorithm (AUROC, 0.92) was as accurate as each of the three categories of clinicians. The algorithm was more accurate (P < 0.03) for blood and fluid prediction than the combined clinical judgment of all three providers but no different from the clinicians in the prediction of surgery (P = 0.7) or intubation (P = 0.8). Automated analysis of 15 min of pulse oximeter waveforms predicts the need for LSIs during initial trauma resuscitation as accurately as judgment of expert trauma clinicians. For prediction of emergency transfusion and fluid bolus, pulse oximetry features were more accurate than these experts. Such automated decision support could assist resuscitation decisions, trauma team, and operating room and blood bank preparations.
منابع مشابه
Prediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملPrediction of Breast Cancer Metastasis Using Fuzzy Models based on Data from Iranian Breast Cancer Patients
Introduction: The metastasis of breast cancer, the spread of cancer to different body parts, is considered as one of the most important factors responsible for the majority of deaths caused by breast cancer in women. Diagnosing the breast cancer metastasis at the earliest stages helps to choose the best treatment and improve the quality of life for patients. Method: In the present fundamental r...
متن کاملThe Effects of the CEO’s Perceptual Bias in Economic Decision-Making and Judgment on the Capabilities of the Financial Reporting Quality
The current research sets out to identify and scrutinize the impact of the CEO’s perceptual biases in judgment and economic decision-making on the reporting quality of the firms listed on the Tehran Stock Exchange. Adopting a mixed method, the present study first seeks to detect the components and indices of CEO’s perceptual biases via critical appraisal and with the special participation of 10...
متن کاملDetermination of the Most Important Diagnostic Criteria for COVID-19: A Step forward to Design an Intelligent Clinical Decision Support System
Background & Objective: Since the clinical and epidemiologic characteristics of coronavirus disease 2019 (COVID-19) is not well known yet, investigating its origin, etiology, diagnostic criteria, clinical manifestations, risk factors, treatments, and other related aspects is extremely important. In this situation, clinical experts face many uncertainties to make decision about COVID-19 progn...
متن کاملPrediction of the vegetation management impacts on reduction of wind erosion risk in the southern parts of the Varamin Plain, Iran
Wind erosion is a major environmental issue affecting land resources and socio-economic settings in Iran. This paper outlines a study undertaken to provide a new tool to manage wind erosion from physical and economic perspectives. The southern part of the Varamin Plain in south of Tehran is used as a case study. The focus of this study is on exploring the economic and physical impacts of 16 veg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Shock
دوره 43 3 شماره
صفحات -
تاریخ انتشار 2015